Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Pan Afr Med J ; 44: 132, 2023.
Article in English | MEDLINE | ID: covidwho-2312496

ABSTRACT

One of the rare consequences of COVID-19 is increasing blood carbon dioxide, which can lead to unconsciousness, dysrhythmia, and cardiac arrest. Therefore, in COVID-19 hypercarbia, non-invasive ventilation (with Bi-level Positive Airway Pressure, BiPAP) is recommended for treatment. If CO2 does not decrease or continues rising, the patient's trachea must be intubated for supportive hyperventilation with a ventilator (Invasive ventilation). The high morbidity and mortality rate of mechanical ventilation is an important problem of invasive ventilation. We launched an innovative treatment of hypercapnia without invasive ventilation to reduce morbidity and mortality. This new approach could open the window for researchers and therapists to reduce COVID death. To investigate the cause of hypercapnia, we measured the carbon dioxide of the airways (mask and tubes of the ventilator) with a capnograph. Increased carbon dioxide inside the mask and tubes of the device was found in a severely hypercapnic COVID patient in the Intensive Care Unit (ICU). She had a 120kg weight and diabetes disease. Her PaCO2 was 138mmHg. In this condition, she had to be under invasive ventilation and accept its complication or lethal risk but we decreased her PaCO2 with the placement of a soda lime canister in the expiratory pathway to absorb CO2 from the mask and ventilation tube. Her PaCO2 dropped from 138 to 80, and the patient woke up from drowsiness completely without invasive ventilation, the next day. This innovative method continued until PaCO2 reached 55 and she was discharged home 14 days later after curing her COVID. Soda lime is used for carbon dioxide absorption in anesthesia machines and we can research its application in hypercarbia state in ICU to postpone invasive ventilation for treatment of hypercapnia.


Subject(s)
COVID-19 , Hypercapnia , Humans , Female , Hypercapnia/etiology , Hypercapnia/therapy , Carbon Dioxide , COVID-19/therapy , Oxides
2.
Cureus ; 14(12): e32218, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2307275

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a pandemic caused by the SARS-CoV-2 virus. Many efforts have been made and are currently being made to prevent and treat this global disease. OBJECTIVES: This study was designed to evaluate the efficacy and safety of nebulized ethanol (EtOH) in treating COVID-19. METHODS: A randomized clinical trial (RCT) of 99 symptomatic and real-time polymerase chain reaction (RT-PCR)-positive patients admitted to a hospital receiving remdesivir-dexamethasone was conducted. They were randomly assigned to receive distilled water spray (control group (CG)) or 35% EtOH spray (intervention group (IG)). Both groups inhaled three puffs of spray (nebulizer) every six hours for a week. The primary outcome included Global Symptomatic Score (GSS) between the two groups at the first visit and on days three, seven, and 14. Secondary outcomes included the Clinical Status Scale (CSS; a seven-point ordinal scale ranging from death to complete recovery) and readmission rate. RESULTS: A total of 44 and 55 patients were enrolled in the IG and CG, respectively. Although there was no difference at admission, the GSS and CSS improved significantly in the IG (p = 0.016 and p = 0.001, respectively). The IG readmission rate was considerably lower (0% vs. 10.9%; p = 0.02). CONCLUSIONS: Inhaled-nebulized EtOH is effective in rapidly improving the clinical status and reducing further treatment. Due to its low cost, availability, and absent/tolerable adverse events, it could be recommended as an adjunctive treatment for moderate COVID-19. Further research on curative effects in more serious cases and in prevention is advisable.

3.
Cureus ; 14(12), 2022.
Article in English | EuropePMC | ID: covidwho-2156509

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a pandemic caused by the SARS-CoV-2 virus. Many efforts have been made and are currently being made to prevent and treat this global disease. Objectives: This study was designed to evaluate the efficacy and safety of nebulized ethanol (EtOH) in treating COVID-19. Methods: A randomized clinical trial (RCT) of 99 symptomatic and real-time polymerase chain reaction (RT-PCR)-positive patients admitted to a hospital receiving remdesivir-dexamethasone was conducted. They were randomly assigned to receive distilled water spray (control group (CG)) or 35% EtOH spray (intervention group (IG)). Both groups inhaled three puffs of spray (nebulizer) every six hours for a week. The primary outcome included Global Symptomatic Score (GSS) between the two groups at the first visit and on days three, seven, and 14. Secondary outcomes included the Clinical Status Scale (CSS;a seven-point ordinal scale ranging from death to complete recovery) and readmission rate. Results: A total of 44 and 55 patients were enrolled in the IG and CG, respectively. Although there was no difference at admission, the GSS and CSS improved significantly in the IG (p = 0.016 and p = 0.001, respectively). The IG readmission rate was considerably lower (0% vs. 10.9%;p = 0.02). Conclusions: Inhaled-nebulized EtOH is effective in rapidly improving the clinical status and reducing further treatment. Due to its low cost, availability, and absent/tolerable adverse events, it could be recommended as an adjunctive treatment for moderate COVID-19. Further research on curative effects in more serious cases and in prevention is advisable.

SELECTION OF CITATIONS
SEARCH DETAIL